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Human behavior monitoring classically refers to the detection of human movements or a simple recognition of
activities in limited known space. The monitoring of human activities in the context of concrete operating tasks
often focuses on the detection of operating errors, unauthorized actions, or implicitly on the violation of protection
goals. This contribution uses a qualitative description approach (situation-operator-modeling(SOM)) with which the
logic of human interaction in given formalized context as action sequences as well as the situational, i.e. contextual,
application of individual single actions can be realized. However, human performance reliability in action sequences
is not clear and the optimal action sequence can not be defined. To solve this problem, the concept of human
performance reliability score (HPRS) proposed in previous works is calculated with the modified fuzzy-based
CREAM (cognitive reliability and error analysis method) approach. Therefore, situated and personalized HPRS
values could be assigned to the action sequences in SOM action space. In this case, an event-discretized behavior
model situated and personalized monitoring human performance with human reliability values could be generated.
Using the example of human driving behavior for driving situations on highways, the application of the method
is presented in detail. The monitoring of concrete example driver in real time will be demonstrated. The examples
show that a direct warning or assistance will be helpful.

Keywords: Situation-operator-modeling (SOM), human reliability analysis, situated driving context, modified
CREAM, FN-DBSCAN algorithm, personalized monitoring.

1. Introduction

With the increased proportion of human-related
accidents in industry and traffic fields, the inter-
est in using assistance systems for supervision of
human operators is increasing Sarkheyli-Hägele
and Söffker (2018). Supervision of human behav-
iors often focuses on the detection of operating
errors, unauthorized actions, or implicitly on the
violation of protection goals Fridman et al. (2019).
Many assistance systems are developed to monitor
human operator behaviors and states in different
application fields. In Farjadian et al. (2020), an
architecture for human supervision of automation
in aviation is proposed which includes the actions
of both a human pilot and an autopilot to ensure
resilient tracking performance when anomalies
occur. In maritime surveillance, a user study con-

ceptualizing knowledge is implemented to support
operators’ situation awareness for enabling the
possibility to detect anomalous behaviors Nilsson
et al. (2008). In dynamic driving context, driver
distractions are monitored to assess the driver’s
ability to take over the vehicle in critical scenar-
ios based on machine learning and deep learning
approaches Gjoreski et al. (2020).

The architecture of situation-
operation-modeling (SOM) for interaction of in-
telligent and autonomous systems is developed
to realize the automated supervision of human-
machine-interaction Ahle and Söffker (2008). In
the past this approach has been applied to dynamic
driving context. In Fu and Söffker (2012), the lane
changing maneuver is supervised with SOM ap-
proach by interpreting the driving scene and driver
action with ’situation’ and ’operator’. The main
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result of this paper is defining individualizable
criteria for the decision moment when individuals
as deciding to pass (start overtaking maneuver), so
initializing a new action changing the upcoming
action options. In Sarkheyli-Hägele and Söffker
(2018), a fuzzy SOM approach is developed for
modeling interaction-based knowledge structures
to handle event-discrete situations in a simulated
driving environment and to automatically generate
a full and individualized knowledge space of sets
of situations and actions and related individual-
ized conditions. Using the SOM approach, action
space could be generated with possible actions the
operator could make considering available options
Ertle et al. (2010). The research gap in the existing
SOM-based monitoring approach is to automati-
cally integrate individualized criteria for the eval-
uation of action sequences into the situationally
generated action space. In this way, it would be
possible to automatically evaluate whether spe-
cific action sequences are safe or rather unsafe
for this person, e.g., because the action sequence
is particularly familiar to this person or because
actions/constellations foreseeably occur in the in-
tended action or in the action space that are un-
safe or with which the person is not familiar or
which he or she demonstrably cannot master. Such
an additional option would improve assistance in
human-machine interaction and lead to more reli-
able human-machine systems.

The human performance reliability estimation
approach applied in this contribution is the mod-
ified fuzzy-based CREAM (cognitive reliability
and error analysis method) developed in He et al.
(2021). This approach could situational and per-
sonalized calculate the reliability of human perfor-
mance in dynamic contexts. With features selected
in driving context, this approach is applied to sit-
uated driving context and the human performance
reliability score (HPRS) is calculated in real time.
It is promising to combine the SOM approach
with the modified fuzzy-based CREAM approach
to monitor human operators in complex situations
and define the optimal action sequence in action
space of operating tasks. In this contribution, the
driving task of overtaking is taken as an example
to explain this method.

The following sections make up this contribu-
tion: In section 2, the SOM-based human reli-
ability evaluation approach is detailed explained
including the SOM approach and modified fuzzy-
based CREAM approach. In section 3, the data-
based HPRS calculation is presented with driving
data. The SOM-based human performance relia-
bility evaluation is applied to the driving task of
overtaking in section 4. The conclusion is pro-
vided in section 5.

2. The SOM-based human reliability
evaluation approach

2.1. Situation-operator-modeling

A situation-operator-modeling approach is devel-
oped in Söffker (2001) allowing the modeling
of human-machine-interaction and to map the
changes and scenes from the real world to a graph-
based-model. Changes are modeled as sequences
consisting of items scenes and items actions. A
scene is modeled as a situation and an action
as an operator. In Fig. 1 a SOM-based sequence
is shown consisting of an actual situation Si, a
current operator Oi and the following situation
Si+1. An operator is represented as a white ellipse.
A situation is described as a situation vector rep-
resented as gray ellipse.

Fig. 1. Action sequence modeled as situation-
operator-situation sequence Söffker (2001)

A situation Si includes a set of characteristics
Cj,i, can be physical, logical, functional, or in-
formational terms and is expressed by its related
values. A situation is related to a fix problem
configuration.

Using the SOM-approach actions in the real
world are modeled as operators. An operator is
related to its functionality F, which depends of ex-
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plicit and implicit assumptions. The assumptions
are described by suitable mathematical, logical, or
textual expressions. A current situation Si and the
following situation Si+1 are connected by an op-
erator, so that an operator can effect the structure
and the values related to the characteristics in the
following situation.

2.2. Modified fuzzy-based CREAM approach

The modified fuzzy-based CREAM approach es-
tablished in He et al. (2021) is applied for
automatic generation of membership functions
and calculation of human performance reliability
score (HPRS) to realize the individualized human
reliability evaluation in real time.

2.2.1. CREAM

The CREAM approach as a so called ”second
generation” of HRA approach is applied for retro-
spective analysis of historic events and a prospec-
tive analysis for the design of high-risk systems
or processes Di Pasquale et al. (2013). It provides
the human cognition model to illustrate the infor-
mation processing which is denoted as contextual
control mode (COCOM) assuming that the degree
of human operator’s control on context is the most
significant index for human performance reliabil-
ity estimation.

Common performance conditions (CPCs) rep-
resents the most vital factors in operation con-
text, which are similar with the concept of perfor-
mance shaping factors Park et al. (2020). There
are nine CPCs defined in CREAM. Each CPC
includes several levels and related expected effects
on performance reliability which are improved,
not significant and reduced. The CPC score could
be calculated as [

∑
reduced,

∑
improved]. In this

case, human performance reliability is determined
with control mode map Hollnagel (1998).

To apply CREAM into other domain, it is ad-
vised to generate a new list of CPCs Taga et al.
(2012). In dynamic driving context, a new CPC
list has to be defined which includes the number
of surrounding vehicles, time to collision (TTC),
ego-vehicle speed, longitudinal acceleration, lat-
eral acceleration, traffic density, and general visi-
bility He et al. (2021).

2.2.2. Automatic generation of membership
functions

Fuzzy logic: Fuzzy logic is used for modeling
the imprecise modes of reasoning that play an
essential role in human decision ability in an en-
vironment of uncertainty and imprecision Zadeh
(1988). It considers the degree of truth of state-
ments continuously between true (1) and false (0).
To define the related membership function, the
core and support points and membership function
shape should be known. In this contribution, trape-
zoidal shape is selected.
FN-DBSCAN algorithm: To define the core and
support points in membership functions, the fuzzy
density clustering method Ulutagay and Nasibov
(2008) fuzzy neighborhood density-based spa-
tial clustering of application with noise (FN-
DBSCAN) is applied.
Genetic algorithm: In FN-DBSCAN, the param-
eter of fuzzy cardinality threshold needs to be pre-
defined, therefore, genetic algorithm is applied for
the optimization of the parameter McCall (2005).

2.2.3. Human performance reliability score (HPRS)

The CPC levels are divided by data clustering.
When membership functions of CPCs are gener-
ated, they will be assigned to different levels with
corresponding expected effects on performance
reliability. In this case, each CPC score is calcu-
lated and human performance reliability score is
generated with the sum of each CPC score.

In general, the steps to calculate HPRS are
following: i) Execute genetic algorithm to obtain
optimal value of fuzzy cardinality threshold. ii)
Apply the FN-DBSCAN to calculate cores and
supports of membership functions of CPCs. iii)
Assign CPC levels and related effects on relia-
bility ot membership functions to calculate CPC
scores. iv) Add up all CPC scores to get the final
HPRS.

3. Data-based HPRS calculation

3.1. Data generation platform

A driving simulator (SCANeRTM studio, Fig. 2)
is applied to collect driving data. Data with ego-
vehicle dynamics (speed, steering angles, etc.) and
surrounding vehicle status (TTC, lateral shift, etc.)
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relative to ego-vehicle are collected to evaluate
driving behavior and human driver reliability.

Fig. 2. Driving simulator laboratory, Chair of Dynam-
ics and Control, U DuE

3.2. Experimental results

In this contribution, an example data set is con-
tributed by a human driver with a valid driving
license for eight years with approximately 250
kilometers per weekly driving. The driving data
between 400 s and 520 s are selected to generate
the membership functions and the HPRS.

Four CPC data including ego-vehicle speed,
TTC, longitudinal acceleration, and lateral accel-
eration are clustered and membership functions
are generated for each CPCs. The CPC scores of
traffic density and general visibility are defaulted
to 1 as the scenario is simple with normal day-
time weather condition and the lane are relatively
empty.

The membership functions of the clustered CPC
data are shown in Fig. 3. For the CPC of speed,
three membership functions are generated. There-
fore, the first membership function (green) could
be assigned to improved effects, the second mem-
bership function (blue) could be assigned to not
significant effects, and the last one (red) is as-
signed to reduced effects. On the contrary, for the
CPC of TTC, the assignment should be the oppo-
site, where the first membership function (green)
is assigned to reduced effects and the third mem-
bership function (red) is assigned to improved
effects as lower TTC indicates higher time pres-
sure for human driver to recognize the situations
and take actions. There is only one membership
function in CPCs of longitudinal acceleration and
lateral acceleration. In this case, the membership

function with membership degree of 1 is assigned
to not significant effects and the other part is
reduced effects.

Fig. 3. Membership functions of CPCs

After the assignment of expected human perfor-
mance effects, the CPC scores could be calculated.
The final HPRS values is the sum of all CPCs
scores. By evaluating the continuously determined
HPRS values, human driving performance can be
quantitatively monitored in real time.

4. SOM-based human performance
reliability evaluation

4.1. Operators and characteristics

In the Table 1 the characteristics included in a
situation vector are shown.

Table 1. List of characteristics including in the situa-
tion vector

Characteristic Unit

C1 : Longitudinal speed [km/h]
C2 : Lateral speed [km/h]
C3 : Longitudinal acceleration [m/s2]
C4 : Lateral acceleration [m/s2]
C5 : Yaw angle [°]
C6 : Steering wheel angle [°]
C7 : Direction indicator to the left [-]
C8 : Direction indicator to the right [-]
C9 : Lane number [-]
C10: TTC to front vehicle [s]
C11: Driving area in the left lane [-]
C12: Driving area in the right lane [-]
C13: Distance to front vehicle [m]
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The characteristics C7 and C8 provide the state-
ment about the direction indicator and have a
Boolean type. If the direction indicator to any di-
rection (left or right) is on, the value of the related
characteristic (C7 or C8) changes from ’False’ to
’True’. The characteristic C9 gives the number, in
which lane the ego-vehicle is driving in the current
moment. The characteristics C11 and C12 provide
a statement about the availability of the driving
area in the left and right lanes close to the ego-
vehicle, which are Boolean.

A sequence consisting of items operators and
situations, which describes a sequence of actions,
can be replaced as a meta-operator. An example
of a meta-operator is ’changing to the left lane’
shown in the Fig. 4. This meta-operator consists
of the basic operators ’Turn on the left direction
indicator’ O4, ’Operate steering wheel to the left’
O8 ,’Turn off left direction indicator’ O5, ’Steering
to the right’ O9 ,and ’Turn off left direction indi-
cator’ O5 (cf. Table 2), so describes the ’Changing
to left lane’ sequence (cf. Fig. 4).

Fig. 4. Meta-operator ’Changing to the left lane’

The operators describing the actions of the
driver are shown in the Table 2.

Table 2. List of characteristics of the situation vector

Operator Description

O1 Acceleration
O2 Deceleration
O3 Keeping the actual speed
O4 Turn on the left direction indicator
O5 Turn off left direction indicator
O6 Turn on right direction indicator
O7 Turn off the right direction indicator
O8 Steering to the left
O9 Steering to the right

In this work an overtaking maneuver is consid-

ered (cf. Fig. 5). The ego-vehicle is the red vehicle
and the vehicle, which has to be overtaken, is the
blue vehicle. Possible vehicles driving in the left
lane are represented with white color. The final
desired situation is, that the ego-vehicle overtakes
the blue vehicle considering the environment, and
so other vehicles. More than one possibility lead
to the final desired situation. Using the situation-
operator-modeling an action space consisting of
possible driver’s behaviors allowing to reach the
final desired situation of overtaking the blue vehi-
cle is proposed in the next section.

Fig. 5. Overtaking maneuver on a highway (2 lanes
for one direction): Ego-vehicle (red)

4.2. Action space

For every action taking or decision making mo-
ment in time a SOM-based action can be estab-
lished to map the individual and situated action
options for this moment in time. The intended
safety evaluation is based on this continuously
changing discrete events. Beside the continuous
evaluation of realized actions (section 4.3) also
the options in specific moments in time can be
evaluated establishing a new safety-related perfor-
mance measure or decision making (section 4.2).

4.2.1. Evaluation of driver’s options

A SOM-based action space consisting of permis-
sible operator sequences, which lead to the desired
final situation of overtaking the blue vehicle, is
developed and shown in Fig. 6. In the concrete
example, four possible paths lead to the desired
final situation and are explained as follows:

Path I: In this case the driver keeps the current
speed and waits of the passing of vehicle(s) in
the left lane (C11 = ’False’). After the left lane is
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free, the driver changes to the left lane (cf. meta-
operator ’Changing to the left lane’ in Fig. 4). The
vehicle, which has to be overtaken, accelerates
(C12 = ’False’), so that the driver of the ego-
vehicle has to decelerate and then to keep the
current speed. After the vehicle in the right lane
do not accelerate and vehicles in the front keep the
speed, the driver of the ego-vehicle can overtake
by accelerating.

Path II: In this case the driver keeps the current
speed and waits of the passing of vehicle(s) in
the left lane (C11 = ’False’). After the left lane is
free, the driver changes to the left lane (cf. meta-
operator ’Changing to the left lane’ in Fig. 4).
The vehicle in the right lane do not accelerate and
vehicles in the front keep the speed, the driver of
the ego-vehicle can overtake by accelerating.

Path III: This case is the optimal driving be-
havior to reach the final desired situation of over-
taking the blue vehicle. The left lane is free (C12

= ’True’), the driver changes to the left lane (cf.
meta-operator ’Changing to the left lane’ in Fig.
4). The vehicle in the right lane do not accelerate
and vehicles in the front keep the speed, the driver
of the ego-vehicle can overtake by accelerating.

Path IV: The left lane is free (C12 = ’True’), the
driver changes to the left lane (cf. meta-operator
’Changing to the left lane’ in Fig. 4). The vehi-
cle, which has to be overtaken, accelerates (C12

= ’False’), so the driver of the ego-Vehicle has
to decelerate and then to keep the current speed.
After the vehicle in the right lane do not accelerate
and vehicles in the front keep the speed, driver of
the ego-vehicle can overtake by accelerating.

Fig. 6. SOM-based action space for overtaking

4.2.2. Evaluating options by summarizing
safety-related performance scores

To quantitatively evaluate different options and
define the optimal action sequence in action space,
the group of artificial values of characteristics for
the situations in Fig. 4 and 6 are defined. It is
assumed that the vehicle speed in front (vehicles
in blue and white in front) maintains the fixed
speed of 80 km/h, the ego-vehicle speed is varying
between 80 and 140 km/h. The distance between
the front vehicles and ego-vehicle is from 30 to
60 m considering the traffic rules. In this case, the
TTC of front vehicle and ego-vehicle is defined.
When the time for lane changing and acceleration
is artificially defined as 10 s, the lateral and lon-
gitudinal accelerations could be calculated with
the relationship of speed and time. With the ar-
tificial defined values of characteristics in action
space for the driving task of overtaking maneuver
described in Fig. 4 and 6, the HPRS of each
situation could be calculated with the membership
functions generated from real driving data. The
results is presented in Table. 3 and Table. 4.

Table 3. The HPRS of situations in meta-operator

Operators HPRS

O4 3.83
O8 3.42
O9 3.42

Different operators result in the changes of
CPCs values in the modified CREAM, leading
to the HPRS values fluctuation. From Table 3, it
can be detected that HPRS is decreasing during
lane change maneuver as the lateral acceleration
is fluctuating. It can be observed in Table 4 that
path III is the optimal action sequence as it has less
action sequences which indicating less cognition
requirement and the values of situation related
HPRS is lower than other paths. Path I dominates
most action sequences presenting human driver
has more information processing and action im-
plementation, and the mean HPRS is higher than
other paths.
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Table 4. The HPRS of situations in action space

Path Operators HPRS

Path I

O3 2.88
M1 3.31
O2 3.43
O3 3.63
O1 2.63

Path II
O3 2.88
M1 3.31
O1 2.83

Path III
M1 3.00
O1 2.83

Path IV

M1 3.00
O2 3.32
O3 3.63
O1 2.63

Fig. 7. Synchronization of SOM-based action se-
quence and HPRS in lane changing maneuver

4.3. Real-time applicable SOM-based HPRS
for real time driver safety evaluation

The SOM approach applying to real driving data
in lane changing maneuver is considered. Totally
seven lane changing maneuvers including chang-
ing to left lane and changing to right lane in
the selected data are considered. The changes of
lateral acceleration can indicate the time of lane
changing as the lateral acceleration is maintaining

Fig. 8. Meta-operator of lane changing to left and
right in simulated driving

around 0 m/s2 when it is lane keeping. The lane
changing is a continuous process which start when
the lateral acceleration begins to change and ends
with the lateral acceleration returning to around 0
m/s2 and in between the lane number is changed.
In this contribution, the top and bottom points in
lateral acceleration near the lane number changing
are selected as the time of starting and ending of
the lane changing maneuver to present the HPRS
varying. In this case, the synchronization map of
SOM based action sequence and HPRS in lane
changing maneuver is presented in Fig. 7.

In Fig. 7, the HPRS in the selected time
synchronizing with the action sequence of lane
changing is presented. With the meta-operator of
lane changing to left and lane changing to right
and the related situations as shown in Fig. 8, the
action sequence of lane changing is illustrated.
Meanwhile, the corresponding HPRS during the
lane changing period is presented synchronously.
In this case, the driver’s lane changing behavior
is monitored and evaluated with the SOM-based
HPRS approach in real time.

5. Conclusion

In this contribution, a SOM-based human reliabil-
ity evaluation approach is developed to calculate
human performance reliability of situations driven
by operators in action space. Within the SOM
approach processes in the real world are consid-
ered as sequences of scenes and actions, which are
modeled as situations and operators, respectively.
To define human performance reliability of human
driver in each situation, the modified CREAM
approach is applied for the calculation of HPRS.
The driving data collected from driving simula-
tor are clustered with FN-DBSCAN to generate
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personalized membership functions of CPCs. An
action space of overtaking maneuver is generated
to describe different possible action sequences and
options human driver available. For illustration
as example artificial CPC values are defined for
HPRS calculation, so that the optimal path can
be determined. The SOM-based action sequence
of lane changing maneuver is presented with the
HPRS synchronously. Finally as result the ap-
proach developed shows that human driver’s lane
changing behavior can be evaluated in real time.
This will allow in future work to use this informa-
tion in combinations with experienced thresholds
to warn the driver or to intervene from the vehicle
side. This approach can be also applied to other
applications, such as captain behavior monitoring
in maritime.
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Human reliability estimation based on fuzzy logic-
modified CREAM approach. In 2021 IEEE Confer-
ence on Cognitive and Computational Aspects of Sit-
uation Management (CogSIMA), pp. 45–50. IEEE.

Hollnagel, E. (1998). Cognitive reliability and error
analysis method (CREAM). Elsevier.

McCall, J. (2005). Genetic algorithms for modelling
and optimisation. Journal of computational and
Applied Mathematics 184(1), 205–222.

Nilsson, M., J. Van Laere, T. Ziemke, and J. Edlund
(2008). Extracting rules from expert operators to
support situation awareness in maritime surveillance.
In 2008 11th International conference on informa-
tion fusion, pp. 1–8. IEEE.

Park, J., W. Jung, and J. Kim (2020). Inter-relationships
between performance shaping factors for human re-
liability analysis of nuclear power plants. Nuclear
Engineering and Technology 52(1), 87–100.
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